If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+4x+20=0
a = -2; b = 4; c = +20;
Δ = b2-4ac
Δ = 42-4·(-2)·20
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{11}}{2*-2}=\frac{-4-4\sqrt{11}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{11}}{2*-2}=\frac{-4+4\sqrt{11}}{-4} $
| 8-3|2x-5|=12 | | 85=-5(-2x-5) | | -20÷x+3=4-5 | | 18x-6=10x+30 | | 12a-4+33=23 | | h-39=27 | | .375x+4=5x+2 | | h+27=39 | | 12x—2=58 | | 3/4+4a=6a/7+7/8 | | 29-5x=3x+5 | | 4. 4x2+4x+1=0 | | 8m-15=-49 | | y=2×7+5 | | 3(3a)+6=81 | | 4/3x+14/5x=-31/5 | | 1/7s=5/7 | | 59=8y+17 | | 1040x=640x+3200 | | x=20-6 | | 4(b−13)=20 | | -8=10−y | | -4(j+-3)=16 | | 22=y/3-13 | | 22=y/3-3 | | -14(w–18)=14 | | 2(x-5)+10=2(2x+2) | | 6=-4.9x^2+8.1x+3 | | 5^3x-11=625 | | 3x2-18x+39=0 | | 3+10x=21+xx= | | 2x-2=9x+51x= |